skip to main content


Search for: All records

Creators/Authors contains: "Rossky, Peter J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 17, 2024
  2. The morphology of semiconducting polymer thin films is known to have a profound effect on their opto-electronic properties. Although considerable efforts have been made to control and understand the processes which influence the structures of these systems, it remains largely unclear what physical factors determine the arrangement of polymer chains in spin-cast films. Here, we investigate the role that the liquid–vapor interfaces in chlorobenzene solutions of poly(3-hexylthiophene) [P3HT] play in the conformational geometries adopted by the polymers. Using all-atom molecular dynamics (MD), and supported by toy-model simulations, we demonstrate that, with increasing concentration, P3HT oligomers in solution exhibit a strong propensity for the liquid–vapor interface. Due to the differential solubility of the backbone and side chains of the oligomers, in the vicinity of this interface, hexyl chains and the thiophene rings, have a clear orientational preference with respect to the liquid surface. At high concentrations, we additionally establish a substantial degree of inter-oligomer alignment and thiophene ring stacking near the interface. Our results broadly concur with the limited existing experimental evidence and we suggest that the interfacial structure can act as a template for film structure. We argue that the differences in solvent affinity of the side chain and backbone moieties are the driving force for the anisotropic orientations of the polymers near the interface. This finer grained description contrasts with the usual monolithic characterization of polymer units. Since this phenomenon can be controlled by concurrent chemical design and the choice of solvents, this work establishes a fabrication principle which may be useful to develop more highly functional polymer films. 
    more » « less
    Free, publicly-accessible full text available August 9, 2024
  3. Free, publicly-accessible full text available June 20, 2024
  4. Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions. 
    more » « less